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Abstract

Task-level control refers to the integration and co-
ordination of planning, perception, and real-time
control to achieve given high-level goals. Au-
tonomous mobile robots need'task-level control to :

effectively achieve complex tasks in uncertain, dy-
namic environments. This paper describes the "
Task Control Architecture (TCA), an implemented _

system that provides commonly needed constructs :
for task-level control. Facilities provided by TCA
include distributed communication, task decompo-

sition and sequencing, resource management, mon-
itoring and exception handling. TCA supports a
design methodoiogy in which robot systems are de-
veloped incrementally, starting first with deliber- :
ative plans that work in nominal situations, and
then layering them with reactive behaviors that
monitor plan execution and handle exceptions. To
further support this approach, design and analy-
sis tools are under development to provide ways of

graphically viewing the system and validating its
behavior ....

Introduction

Most autonomous robot systems have specific tasks

to perform -- such as navigating to given locations,
searching for particular objects, exploring the environ-
ment, etc. To make a robot perform its tasks reliably, it
is desirable to provide explicit control over the achieve-
ment of tasks -- controlling the sequencing of sub-

tasks, monitoring their progress, handling exceptions,
and managing the robot's limited computational and

physical resources.
We refer to this as task-level control: the integra-

tion of planning, perception, and real-time control for
the purpose of achieving high-level goals. To facilitate
the development of task-level control systems, we have
developed the Task Control Architecture (TCA). To
date, TCA has been used in the development of about
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a dozen autonomous robot systems, including a walk-

ing rover [Simmons et ai., 1992], several indoor mobile
robots [Simmons et aL, 1990], an excavator [Singh and
Simmons, 1992], and an inspection robot for the Space
Shuttle [Dowling and others, 1992].

The motivation for developing a task-level control ar-
chitecture is that there appears to be a common set of
control constructs that most autonomous mobile robots

need, and that development of individual robot systems
can be simplified by use of an architecture that explic-

itly supports those constructs. In much the same way
as an operating system provides common facilities and
hides details of the underlying computer, so too does

TCA provide needed task-level control constructs while
hiding details such as the mechanisms used for commu-
nication and task synchronization.

The facilities provided by TCA were chosen based
on analysis of existing mobile robot systems and pro-
jected needs of future systems. The analysis showed
that the architecture must facilitate the development

of distributed, modular, and concurrent systems. In
addition, a task-level control architecture should allow
the concurrency to be controlled in a selective (and

explicit) manner, so that distributed processes do not
interact in undesirable ways. This includes providing

methods for sequencing and synchronization of sub-
tasks, as well as managing access to system resources
(e.g., cameras, actuators, computers). Finally, to cope
with uncertainties in the environment and uncertainties
in the achievement of subtasks, the architecture needs

to support extensive, task-dependent monitoring and
exception-handling strategies.

In addition to providing all the above capabilities,
the Task Control Architecture supports a particular

methodology for designing and developing autonomous
robot systems. The approach, which we term struc-
tured control, involves first developing basic deliberative

components that handle nominal situations, and then
increasing reliability by incrementally layering on reac-
tive behaviors to handle exceptions. With TCA, this
can be done without requiring significant modification

to the existing robot software system. In particular,
monitors and exception handlers can be added after the
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basic system has been developed.
This layering of reactive behaviors on to a delibera-

tive base provides an engineering basis for developing
autonomous mobile robot systems. First, incomplete
understanding of the tasks, environment or hardware
is accommodated by separating the design into nomi-
nal, and presumably better understood, behaviors and
the more numerous, but infrequently occurring, excep-
tional situations (which may become known and un-

derstood only during testing of the robot system). Sec-
ond, the separation of nominal and exceptional behav-
iors increases overall system understandability by iso-
lating different concerns: the robot's behavior during
normal operation is readily apparent, and strategies for
handling exceptions can be developed separately and
then added to the existing system with a minimum of
effort. Finally, complex interactions are minimized by
constraining the applicability of reactive behaviors to

specific situations, so that only manageable, predictable
subsets of the behaviors will be active at any one time.

The rest of this paper describes the Task Control Ar-

chitecture in more detail, focusing on a few applications
of the architecture to the development of autonomous
mobile robot systems. The paper concludes with a brief
description of where the development of TCA is head-
ing -- in particular, describing design and analysis tools
that we are beginning to develop.

The Task Control Architecture

The Task Control Architecture has been designed to
facilitate the process of developing and controlling au-
tonomous robot systems that must perceive, plan and
act in uncertain, dynamic environments [Simmons,
1992a, Simmons, 1992b]. TCA provides a language
for expressing task-level control decisions, and provides
software utilities for ensuring that those control choices
are correctly realized by the robot. The five major types
of control constructs supported by TCA are:
• distributed communication

• task decomposition and sequencing
• resource management
• execution monitoring
• exception handling

A system built using TCA consists of robot-specific
processes (called modules) that communicate by send-
ing messages via a general-purpose central control mod-
ule (see Fig. 1). Modules can be written in either C or
LISP, and can operate on a number of different com-

puter platforms (including Sun, SGI, Vax, Macintosh,
and 680xx and i486 processors) and on different oper-
ating systems (including Unix, VxWorks and Mach).

The robot-specific modules register with the central

control module which messages they can handle, along
with the data formats associated with the messages.
The data formats can be complex, including embedded
structures, arrays, and pointers. TCA is responsible
for encoding and decoding the data into byte streams

and routing messages (via sockets) to the appropriate
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Figure 1: Task Modules for Ambler Walking System

modules to be handled. Messages are anonymous, that
is, the sending and receiving modules do not know each
other's identities. This facilitates modular development
-- one module can easily be substituted for another
with the same functionality (even while the rest of the

system continues to operate). Thus, for example, a
graphical simulator that has the same message inter-
face as the real-time controller can be substituted at
will, which greatly facilitates the development and de-
bugging process (as well as protecting valuable robotic
hardware!).

TCA provides different types of messages, each with
somewhat different semantics. For example, inform
messages provide one-way communication between pro-
cesses; query messages provide two-way communication
(providing a client-server relationship), and broadcast
messages enable one module to distribute data to any
number of receiving modules simultaneously. Other
message types, including goals, commands, monitors
and exceptions, will be discussed below.

Task Decomposition

Besides providing for data communication, TCA pro-
vides a host of facilities for coordinating robot systems
at the task level. Modules use the TCA control con-

structs to constrain the robot's behavior. For example,
a module can specify the order in which subtasks should
be carried out, or indicate when and how to monitor for
exceptional conditions.

Central to TCA is a hierarchical representation of
subtasks called task trees. In essence, a task tree is
TCA's notion of a plan, representing both goal/subgoal
decomposition, as well as temporal constraints between
node, which indicate (partial) orderings on their exe-
cution. TCA constructs and maintains task trees dy-
namically: nodes in the task tree are associated with
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Figure 2: Task Tree for Ambler Walking

messages; when a message handler itself issues a mes-
sage, a child is added under the node associated with
the message being handled. TCA utilizes the subgoM
and temporal constraint information to schedule and
coordinate the sending of messages.

Figure 2, for instance, illustrates a simplified version
of the task tree for autonomous walking of the Am-
bler rover [Simmons el al., 1992]. In the figure, narrow
vertical arrows denote task decomposition and heavy
horizontal arrows denote temporal constraints on task

planning and execution. The task tree indicates that
the Ambler sequentially traverses a series of arcs, where
planning how to traverse one arc is delayed until the
previous arc has been completely traversed. Traversing
an arc consists of taking a sequence of steps, with each

step consisting of a pair of leg and body moves. Un-
less the end of the arc has been reached, the planning

module handling the "Take Steps" message recursively
issues another "Take Steps" message. Note that the
absence of a delay planning (DP) temporal constraint
between the "Achieved Position?" monitor node and

subsequent "Take Steps" goal node indicates to TCA
that planning one step can occur concurrently with the
execution of the previous step. This use of concurrency
enables the Ambler to achieve nearly continuous motion

[Simmons, 1992a].

Resource Management

Many robot systems have limited resources that must
be managed efficiently. This is particularly important
when the robot system consists of multiple, interacting

processes in order to prevent resource contention and
conflict. For example, if the robot has a camera on a
pan/tilt head, the processes that need visual informa-
tion must have ways to point the camera and to ensure
that no other process will re-aim it until the required

images have been acquired. Similarly, a robot system
might want to ensure that a planning module remained
available to deal with an upcoming, high priority re-

quest.
TCA provides support for this type of resource man-

agement. Procedures that handle messages can be
grouped into logical units, called resources. These units
can, in turn, be grouped into modules (see, for instance,
Fig. 1). TCA maintains the constraint that only one
message will be handled by a resource at a time. How-
ever, since modules may consist of multiple resources,
a module can be processing multiple messages at once

(for instance, if it is running in a multi-tasking environ-
ment such as VxWorks). This division into resources
and modules is totally up to the discretion of the robot

system designer, and can be organized so as to promote
modularity, efficient use of resources, or the need to
access a common piece of hardware.

TCA also enables a module to lock the resource of

another module. This prevents any other module from

accessing the resource until it is unlocked. This pro-
vides a mechanism for synchronizing subtasks: the re-
source can be locked while a time-critical operation is

taking place, and then unlocked to enable normal mes-
sage flow. In the Ambler systeml for example, the per-
ception module locks the real-time controller resource
before acquiring laser range images, in order to prevent

blurring.

Monitoring and Exception Handling

One of the most important task-level control func-
tions for an autonomous mobile robot is to monitor its

progress and safety, and to handle exceptions arising
from violated expectations. The structured-control ap-
proach to designing robot systems advocates that such
reactive behaviors be added incrementally, on top of the
task tree that represents the basic, deliberative plan for

achieving the task.
The rationale here is that, for complex tasks and en-

vironments, it is too difficult to design a system from
the start that acts correctly in all situations. This is

primarily because either the environment is not that
well understood (especially if it is dynamic or remote,
such as the surface of another planet) or the interac-
tions between the environment and the robot are not
well understood (such as for an excavation robot). Of-
ten the best that can be done in such cases is to design
for the known situations first, and then incrementally

debug and extend the system as experience dictates.
TCA provides several mechanisms that directly sup-

port this approach. For one, exception handling strate-
gies can be added incrementally without modifying ex-
isting components: a module can add information to
an existing task tree to indicate which procedures TCA
should invoke in response to exceptions raised by other
modules. When an exception is raised, TCA searches

up the task tree to find a handler designated for that
exception. If the exception handler finds it cannot ac-
tually deal with the particular situation, it reissues the
exception and the search continues up the tree. Typi-
cally, the strategies for dealing with exceptions involve
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Figure 3: Task Tree with Monitors and Exception Han-
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modifying the currently executing plan, either by killing
off parts of the task tree or adding new nodes and/or
temporal constraints to the tree.

For example (Fig. 3), the Ambler real-time controller
monitors force sensors in the feet and raises an ex-

ception when a threshold is exceeded (indicating un-
expected terrain contact). A separate error recovery
module handles this by modifying the current leg tra-
jectory to surmount the obstacle, and then instructs

TCA to re-execute the trajectory [Simmons, 1992b]. If
modifying the leg trajectory fails to clear the obstacle,
the complete move may be replanned, the Ambler's feet
may be shuffled into a standard configuration, etc. Ulti-
mately, if no fix is found, the walking task is terminated
and the user is notified.

Just as it makes sense to take advantage of hierarchy
in decomposing tasks into subtasks, it makes sense to
treat exceptions in a hierarchical fashion. The idea is

that lower-level exception handlers are more specific to
a given failure, and can have more local, direct effects

on the problem; the handlers located higher up the tree
handle a wider range of exceptions, but since their ef-
fects are broader and have more impact on the overall
plan, they should be tried only when the more specific
strategies fail.

Execution monitors can also be added incrementally
using the TCA wiretap control construct. The wiretap
mechanism enables a monitor to be associated with a

class of messages, so that the monitor is automatically
triggered whenever a message of that class is handled.
For example, before every leg or body move of the Am-
bler, a stability monitor is invoked to verify that the
move will not cause the robot to tip over; after every
leg move, a footfall monitor analyzes the force sensor

data to detect possibly unstable footholds (see Fig. 3).

These monitors were added after the basic walking

component of the Ambler was designed and debugged,
in order to enable the system to handle increasingly dif-
ficult terrain and longer distances. For example, in one
experiment, the Ambler walked over 500 meters out-

doors in hilly terrain (with slopes up to 30%). During
the experiment, in which the Ambler took over 1000
footsteps, many exceptional situations were encoun-
tered: unexpected terrain collisions, hardware faults

(amplifiers, motion faults, sensor failures) and software
faults (mainly when the planners could not find suitable

footfalls). All these situations were dealt with by the
robot itself: the conditions were detected in a timely
manner and, except for certain hardware faults where

humans had to manually reset the hardware, the robot
autonomously recovered from the situations and con-
tinued walking.

Monitors can also be added to check for ongoing op-
portunities or contingencies. For example, one of our

indoor mobile robots has the task of keeping the lab
floor free of cups [Simmons et al., 1990]. The robot
system employs one monitor to check whether a new

cup has been spotted by the vision system. For every
cup found, a goal is added to retrieve the cup and an-
other monitor is added which checks to ensure that the

cup is still visible. If the cup disappears from view,
then it is assumed that someone else picked it up, and
the monitor cancels the associated "cup retrieval" task.
Thus, the system is able to handle multiple goals that
are both activated and deactivated asynchronously.

Comparisons

TCA and the structured-control approach differ from
the behavior.based approach, in which systems con-
sist of collections of local behaviors that act accord-

ing to direct sensing of the environment [Brooks, 1986,
Connell, 1989]. The global behavior of such systems
typically emerge from interactions between the local

behaviors [Agre and Chapman, 1987, Brooks, 1991]. A
problem with the behavior-based approach is it assumes
that robust primitive behaviors can be developed that
act correctly in all, or most, situations. This can be

very difficult in practice, given incomplete knowledge
about the environment and the robot's interaction with
it. In contrast, the structured-control approach advo-
cates developing complete components for limited en-
vironments, and incrementally updating the design to
handle more challenging and diverse requirements.

The approach also differs from other hierarchical ar-

chitectures, such as NASREM [Albus et al., 1989], in
which the flow of control is primarily top-down. While

top-down task decomposition is important in TCA, the
architecture also provides for significant bottom-up con-
trol in its use of monitors and hierarchically scoped ex-
ception handlers. This enables autonomous robot sys-
tems to be very reactive to changes in the environment.

The approach used in TCA is probably closest in
flavor to the RAPs system [Firby, 1989] and related
architectures [Gat, 1992, Georgeff and Lansky, 1987],
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Figure 4: Gantt Chart of Module Activity

which feature temporal sequencing of subtasks in con-
junction with monitoring and error recovery. The main
differences are that TCA is based on true concurrency,
rather than interleaving of subtasks (which allows it to
exhibit better real-time performance), and that plan-
ning, monitoring and exception handling are all cleanly
separated (which facilitates evolutionary robot system
development).

Design and Analysis Tools

While TCA and the structured-control approach have
proven useful for complex, autonomous robot systems,
in practice developing such systems is often a time-
consuming, trial-and-error process. To reduce this ef-
fort, we are currently developing tools to aid in the
analysis and design of TCA-based robot systems.

The first two tools that we developed analyze the log
files that TCA produces of all message traffic. The log
files contain important information regarding the types
and order of messages sent within the system. One tool
in current use processes log files and produces graphi-
cal representations of TCA task trees (similar to that
shown in Fig. 2). A developer can recreate the task tree
message by message, either post hoc or as the system
runs, to see what the task tree looks like as it evolves,
and what temporal interactions might be causing prob-
lems. This tool has proven particularly valuable be-

cause it is typically difficult to predict in advance the
behavior of complex distributed systems due to subtle
timing interactions between processes.

Another tool analyzes log files to produce Gantt
charts showing module activity (see Fig. 4 -- the dark
bars indicate when a module is processing messages;

the light bars indicate when it is waiting for the reply
to a query message). For each module, the chart shows
which messages it is processing at what times, and when
messages are queued due to resource contention. This
tool has been used to find bottlenecks in system per-
formance. For example, it was used in the development
of the Ambler system to determine how to maximize
performance through the use of concurrency. The Am-
bler system was originally developed with a sequential
sense-plan-act cycle. The use of this tool indicated that
continuous motion could be obtained by executing one
step while planning the next one, since the time needed
for executing steps exceeded the planning time for steps
[Simmons, 1992a]. More recently, a similar analysis in-
dicated that perception was the bottleneck in system
performance: based on this, TCA control constructs
were added to make some of the perceptual processing
concurrent, as well [Hoffman and Krotkov, 1991].

We are beginning development of additional tools to
aid in the design of mobile robot systems. One tool,
similar in spirit to a CASE tool, would enable designers
to graphically specify task decomposition strategies, in-
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cludingconditionals,loops,temporalconstraints,mon-
itorsand exception handlers. The tool would then gen-
erate the TCA calls needed to implement those specifi-
cations. We anticipate that this tool will be very useful
in rapidly prototyping system designs and in document-
ing the design process.

Eventually, we would like for the tool to actually help
validate the system design, detecting problems such
as malformed data interfaces between modules, poten-
tial deadlock situations, resource contention, etc. To
do this, we need to apply automated reasoning tech-
niques to TCA-based system designs (for instance, us-
ing model-checking techniques [Clarke et al., 1986]). To
this end, we have begun formalizing the Task Control
Architecture control constructs using a combination of
temporal logic and the Z notion [Spivey, 1992].

For example, the following schemas give the basic
formalization of the notion of task trees: a task tree is a

set of nodes, each of which has a parent. The "received"
set consists of the messages that TCA has received and
the "finished" set contains those that have already been
handled by some module. A task tree node, in turn,
has an associated handler, type, and state (received,
running, finished) and a set of temporal constraints.
The task tree schema places some conditions on the
temporal constraints of various nodes of the task tree.

_ TaskTree
nodes : P Node

parent : Node -+* Node
received : seq Node
finished : seq Node

V node, node2 : Node •

(node.type E {Query, Inform} =_
parent(node) = root A
node.achievConst = 0 A

node. onHoldUntii = f_) A
(parent(node) = node2 =_,

node.achievConst C_ node2.achievConst) A
node.handler = node2.handler ¢¢,

node = node2

root q_ nodes

nodes = ran parent A dom parent = nodes U {root}

_ Node
handler : HANDLER__ID

type : NODE_TYPE
state : EXECUTION-STATE
achievConst :P TEMPORAL_CONSTRAINT
onHoldUntil :P TEMPORAL_CONSTRAINT

type = Command ::¢,
achievConst = onHoldUntil

type __ {Query, Inform} ::_
achievConst = ¢_ A
onHoldUntil = ¢_

When the formalizations are completed, we expect to
use them to prove properties about the performance of
specific robot systems. For example, using the current
temporal formalization, we can show that the temporal
constraints described in [Simmons, 1992a] are sufficient
to ensure that the Ambler walking system will plan at
most one step in advance. We would also like to use
the Z formalization to prove the correctness of the im-
plementation of TCA, to give users confidence that the
architecture correctly meets the intended semantics.

Conclusions

Autonomous robot systems need task-level control in
order to effectively integrate planning, perception and
actuation to perform complex tasks in uncertain, dy-
namic environments. The Task Control Architecture

(TCA) has been developed to facilitate the creation
of task-level control systems. TCA provides control
c0nstructs that are commonly needed by autonomous
robot systems, including distributed communication,
task decomposition and sequencing, resource manage-
ment, monitoring and exception handling,

TCA supports the structured-control methodology of
system development in which plans are first designed to
work in nominal situations, and then reactive behav-

iors (execution monitors and exception handlers) are
layered on to the base of deliberative plans. We ar-
gue that such a design philosophy is useful in situations
where the environment the robot will be operating in,
and/or the robot/environment interactions, are not to-
tally understood.

It is our contention that reliable performance in a
wide range of situations can best be obtained by incre-
mentally adding on reactive behaviors that deal with
specific, previously unanticipated, situations. It is also
beneficial to structure such behaviors hierarchically, re-
lying first on lower-level reactions that have specific,
but local, effects, and using higher-level reactions with
more global effects only when the more specific ones fail
to solve the problem.

TCA and the structured-control design methodol-
ogy have been used in developing about a dozen au-
tonomous mobile robots, including a planetary rover, an
indoor mobile manipulator, an excavator, and a robot
for inspecting the Space Shuttle. In each case, the com-
munication and control constructs provided by TCA
made it easier to develop and debug the concurrent,
distributed systems.

We are continuing our efforts by providing design
and analysis tools to support the development of TCA-
based systems. In particular, we are formalizing the
TCA control constructs in order to provide tools for
automatically reasoning about and validating system
designs.
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